

1

Abstract

Facial features are complex structures which give

importance in the identification of identity, emotion, age,

and other social information. As such, various work has

been done to introduce the ability to computers, with

neural networks achieving exceptional success.

 In this paper, we compare a Convolutional Neural

Network, Multilayer Perceptron and Inception v3 in 5

image classification tasks; Binary (emotion, age, glasses,

human) and Multiclass (hair color). Several experiments

were also done with the CNN to identify the best

hyperparameter and other parameter methods.

 Based on tests, Inception v3 performed the best,

although its improvements were marginal compared to the

CNN, which required less computational power and

training time. All models performed better on binary

classification compared to multiclass, mainly due to the

lack of training data per class. In the CNN, experiments

showed that automatically calculating class weights based

on training data, using a 3X3 filter size, increasing FC

layer size, only using image augmentation as a regulariser,

a cross entropy loss and a Sigmoid activation for the FC

layer lead to the best performance for image classification

tasks.

1. Introduction

In this paper, 5 image classification tasks based on facial

features are performed using several machine learning

models. The classification tasks consist of 4 binary

problems and 1 multiclass problem. The binary tasks

include; Emotion recognition (smiling or non-smiling),

Age identification (young or old), Glasses detection (with

or without glasses) and Human detection (real human

subjects (CelebA) or cartoon subjects (Cartoon set)). The

multiclass task involves classification of images between 6

different hair classes; Blond, Ginger, Grey, Brown, Black

or Bald (no hair). The machine learning models will then

be trained to predict the correct class of testing images.

1.1. Dataset

The dataset consists of 5000 labelled images which

contain subsets of two other datasets; CelebFaces

Attributes Dataset (CelebA) and Cartoon Set. CelebA

contains images of faces of various celebrities. Cartoon Set

contains 2D human cartoon avatars. In addition, the dataset

also contains noise images without any faces e.g. images

of backgrounds of nature or a single colour. For images

with faces, in addition to the variety in basic facial features,

may also include accessories, specifically glasses. The

images are formatted in PNG and each has a resolution of

256 X 256 pixels. Images with faces have a bit depth of 24

while noise images have a bit depth ranging from 8 to 32.

1.2. Classes

The images are labelled via a CSV file, attribute_list.csv,

containing each image’s class labels according to several

attributes. The dataset is heavily imbalanced for smiling,

age, glasses and hair classification, as the classes are not of

equal proportion. Only for the human attribute is the

dataset near balance with a 12.38% percentage difference.

1.3. Preprocessing

In all preprocess methods, Python libraries were used.

1.3.1 Noise removal

Although noise can be real-world outliers for which

there are methods for data integration, in this dataset, noise

is unwanted [1]. Noise can affect the performance, as

neural networks are susceptible to false-positives [2].

For noise removal, the noise images in the dataset are

discarded from the use of training, validation, and testing.

Using the Pandas library, the attribute list CSV file was

read as a dataframe. Then the dataframe was filtered from

all noise images by removing rows where every column

(class) had a label of -1. Noise images had a value of -1

across all columns. The new dataframe is then saved and

used as a reference for training, validation, and testing

models, resulting in a dataframe containing 4565 rows.

1.3.2 Training-Validation-Testing split

The dataset is split into training, validation, and testing

sets. In this paper, the testing set is used as an unbiased

evaluation of model performance after training while the

validation set is used for tuning hyperparameters [3].

In the Implementation section, the Keras method

flow_from_dataframe is used to input a Pandas dataframe

and image directory to generate data for training. This

requires the dataset to be split into two folders, i.e. training

and testing. A function creates the folders and randomly

copies images from the dataset into the new folders

according to a training-testing split. For copying images,

the OpenCV library methods cv2.imread and cv2.imwrite

were used. Scitkit-learn’s train_test_split method was used

to split the dataframe into random train and test subsets.

A training-testing split of 80/20 was used, producing

3652 training images and 913 testing images. This split

produced the best performance, producing the lowest

Utilising Convolutional Neural Networks for Facial Feature Classification

15000514

University College London

https://github.com/hasifuzir/AMLSassignment_15000514

https://www.dropbox.com/sh/sjl3mcfn1lndedl/AAC0qVq02C_p90A_fUAbVRDEa?dl=0

https://github.com/hasifuzir/AMLSassignment_15000514

2

average loss of 0.0740. Further details are presented in the

Determining Training-Testing Ratio section of the

Supplementary. For training-validation, a 75/25 split was

used instead to maximise performance as shown in the

Determining Training-Validation section of the

Supplementary and to ensure that the training, validation,

and testing split is 60/20/20 for an equal validation and test

set. For the validation set, the Keras ImageDataGenerator

built-in validation_split parameter was used, which allows

a validation set to be created during image augmentation.

1.3.3 Image augmentation

Image augmentation is a useful method to inflate the size

of a dataset and improve image classification without

needing to source additional images. Research has proved

the effectiveness of traditional and advanced data

augmentation techniques [4]. The Keras Image

Preprocessing ImageDataGenerator method was used to

generate batches of augmented images in real-time. For all

sets, images were converted from an RGB value between

0-255 to a 0-1 range through a 1/255 scaling factor. This

avoids the need for massive processing power.

Figure 1. Image augmentations of image 1006.png. From left:

Original, shear, zoom, horizontal flip.

For the training and validation set images, three different

image transformations were used; Shearing (skews the

image), zooms (magnifies features) and a horizontal flip,

shown in Figure 1. These transformations were applied

randomly to images. These augmentations produced a

more varied dataset to increase model performance.

2. Proposed Algorithms

2.1. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of

Deep Neural Network (DNN), inspired by the biological

process of the human visual cortex [5]. It is useful for

image classification as the architecture recognises that

image features are dispersed and leverages convolutions

way to extract features from multiple locations without

treating each pixel as a separate input, as demonstrated by

the pioneering LeNet5 [6]. This makes CNN excellent for

the image classification problem in this paper.

A CNN consists of Convolutional, Non-Linear, Pooling,

and Fully Connected (FC) layers [7]. The architecture of

the CNN implemented is summarised in Figure 2.

First, an RGB image with dimensions 256X256X3 is

used as input. The image has a depth of 3 representing the

3 colour channels. The image is essentially three 256X256

2D arrays. The convolutional layer applies convolutional

filters (kernels) on inputs. A 3X3 filter window is moved

across the image. At every position, the convolution

operation is applied - the 3X3 window’s values are

multiplied by the values of the image covered by the filter.

The convolutional layer filters the image and “picks up”

details of features from the images, resulting in effective

pattern checking. Each filter has an associated weight

which changes during training and outputs a high value

when the same pattern is recognised. Mathematically, the

equation for the convolution is as per Equation 1.

(𝑓 ∗ ℎ) = ∑ ∑ 𝑓(𝑘, 𝑙)ℎ(𝑖 − 𝑘, 𝑗 − 𝑙)

𝑙𝑘

 [1]

Where f is the image, h is the filter.

Three convolutional layers were used, with the first 2

layers using 32 kernels and the last layer using 64 kernels

instead. The stride, or distance the window moves is set at

1 to avoid losing any detail. No padding was used in

convolutions. As neural networks model human neural

activity, activation functions are used to model the firing of

neurons. In all convolutional layers, the Rectified Linear

Unit (ReLU) activation is used.

Figure 3. Graphs of the ReLU and Sigmoid activation functions.

ReLU is used because it is computationally inexpensive,

require less training time (faster convergence), and

performs better than other activations such as logistic

sigmoid [8] [9]. ReLU removes negative numbers from the

output and passes positive values as shown in Equation 2.
𝑓(𝑥) = {0 𝑓𝑜𝑟 𝓍 < 0, 𝓍 𝑓𝑜𝑟 𝓍 ≥ 0} [2]

 Another major benefit to the ReLU function is that it

avoids gradient vanishing since the gradient is constant at

values of 𝓍 above 0, which is 1. During backpropagation,

the gradients of error loss are calculated with respect to the

weights and every layer reduces the gradient exponentially

when other functions are used [10]. ReLU avoids this

problem as its derivative is either 0 or 1. Consequently,

ReLU also avoids an exploding gradient. However, a dying

ReLU problem may arise. If too many activations are 0, no

gradients are backpropagated and the neurons may become

stuck and die off, as weights cannot be altered [7].

The pooling layer applies a pooling operation over an

input. Max pooling is the pooling function used. The kernel

window is moved over the entire input and only takes the

Figure 2. The CNN architecture with 256X256 RGB images input

to 3 convolutional layers, 3 max pooling layers, and 2 FC layers.

Figure 4. Visualisation of the convolution operation using a 3X3

filter and a pooling operation using a 2X2 pool with a stride of 2.

3

largest value from the image covered by the kernel

window. Figure 4 depicts an example of the max pooling

operation. Pooling reduces feature map (image) size and

introduces invariance by obscuring the location of features

extracted by the convolution layer. This results in a

network that is computationally inexpensive and

insensitive to a feature’s exact location.

 2X2 pools with a stride of 2 are used. A greater stride

will increase invariance. The first two max pooling layers

use 32 kernels and the last uses 64. The output of the third

pooling layer is then flattened into a feature vector to be

used by the dense FC layers to perform classification [7].

 The dense layers’ neurons are connected to each other

and other neurons in the previous layer. The first FC layer

consists of 128 neurons which are activated using ReLU

and the output is passed to another FC layer which either

uses 1 neuron with a Sigmoid activation for binary

classification or multiple neurons with a Softmax

activation for multiclass classifications.

 In addition to introducing nonlinearity (which benefits

learning), the Sigmoid tends to bring activations to either

side of its curve as shown in Figure 3, as values near the

middle of the curve relatively steep. Equations 3 and 4

show the Sigmoid function equation and its derivative.

𝑓(𝑥) =
1

1 + 𝑒−𝑥 [3]

𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) [4]

The output of this function will be in the range of 0-1,

preventing a blow-up. Its output is suitable for binary

predictions for clear distinctions in predictions. Its

derivative is computationally inexpensive. However, it can

lead to vanishing gradients. As the curve tapers out at each

end, the gradients are small, which massively reduces loss

gradients during backpropagation [11].

 For multiclass classification, a Softmax function is used

instead. The function acts like a Sigmoid by ensuring

outputs are bound between a value of 0 and 1 but it divides

each output so that the total sum of all outputs is equal to

1, i.e., probabilities. This is shown in Equation 5. The

output is equivalent to the categorical probability

distribution, suitable for multiclass predictions [7].

𝑓(𝑥) =
𝑒𝑥𝑘

∑ 𝑒𝑥𝑘𝑘

[5]

 Where k is the number of classes.
 For training, the CNN performs backpropagation to

calculate partial derivatives, allowing it to associate

features with its classes through supervised learning. For

the loss function, which measures performance, cross-

entropy was used. Cross-entropy loss is given in Equation

6 and simplifies to Equation 7 for binary classification.

𝑙𝑜𝑠𝑠 = − ∑ 𝑦 × 𝑙𝑜𝑔(𝑝)

𝑁

𝑐=1

[6]

Where y is the class ground truth, p is predicted probability

that observation is of class c and N is the total classes.

𝑙𝑜𝑠𝑠 = −(𝑦 × 𝑙𝑜𝑔(𝑝)) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)) [7]

Where y is the class ground truth, p is the predicted probability.

 Cross entropy heavily penalises predictions of high

confidence and value, which are incorrect. Cross-entropy

is more preferred for classification tasks as Mean Squared

Error can be badly defined for a distinct set of classes [7].

 For the optimiser, which allows the model to update

weights and reduce loss, Adaptive Moment Estimation

(Adam) is used. It uses fractions of previous gradients,

allowing faster convergence, reduced oscillation, and

computational efficiency [12]. It uses moments (gradient

of past steps) of first and second order. The learning rates

are adapted on the first moment (mean) and average of the

second moments of the gradients.

2.2. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a type of Artificial

Neural Network consisting of a network of neurons called

perceptrons. A perceptron is as a linear binary classifier

[13]. Based on several inputs, its weights, and bias, a single

output is calculated as shown in Equation 8.

𝑦 = 𝛼(∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) [8]

Where y is the output, 𝛼 is the non-linear activation function,

x is weight, b is bias, and x is input.

The activation function is acts as a threshold for

activation and output strength. Non-linearity allows MLPs

to model nearly any arbitrary complex function. Without

it, a neural network would act as a linear regressor [13].

Figure 5. The architecture of the MLP with 2 hidden layers.

 Figure 5 depicts the architecture of the MLP used. The

first layer is an input layer with a size of 196608 (image

flattened into a vector). This is input to the two hidden

layers, both containing 128 neurons with a ReLU

activation. Although the Universal Approximation

Theorem states a single hidden layer is enough, adding

another allows better training and performance [14] [15].

Based on the task, the output layer contains 1 neuron

with a Sigmoid activation or multiple neurons with a

Softmax activation. The network was trained using cross

entropy loss and Adam optimizer. Benefits and

justification to these choices have been discussed earlier.

2.3. Inception v3

Inception v3 is the third iteration of the Inception deep

convolutional architecture. GoogLeNet (Inception v1)

introduced Inception modules; convolutions on inputs

using different filter sizes and max pooling which are

concatenated. In image classification, salient parts in the

image can vary. Different kernel sizes allow different

distribution of features to be accommodated. Inception

modules allow NNs to get wider, as deeper networks are

4

prone to overfit and are computationally expensive [16].

Inception v3 contains 11 inception modules in 42 layers.

Inception v3 implemented factorising convolutions, grid

size reduction, and aggressive regularisation. Convolutions

were factorised into smaller sizes and asymmetric

convolutions. Factorisation reduces the number of

parameters without a decrease in performance. Feature

map downsizing is typically done via max pooling. The

model proposed a new method by concatenating a

convolutional and max pooling layer, proving to be less

expensive. Label smoothing regularisation was used to

prevent one logit from becoming much larger and acted as

a dropout [17].

The Inception architecture rethought how CNNs were

built, going wider instead of deeper. Inception v3 contained

fewer parameters than other popular models such as

AlexNet and VGGNet and achieved better performance. It

managed a lower Top-5 error (4.2%) compared to

VGGNet, PreLU-Net and Inception v2 in the ImageNet

Large Scale Visual Recognition Competition (ILSVRC).

3. Implementation

All models were implemented in Python and use the

Keras library running on top of the TensorFlow library.

3.1. Convolutional Neural Network

A Keras Sequential object was created which will allow

stacks of layers for the CNN [18]. A Conv2D layer was

then for a convolutional layer. The input shape dimensions

were set at the dataset image dimensions of 256X256, with

a depth of 3 to indicate the image RGB colour channels. A

total of 32 3X3 convolutional filters were used.

A small 3X3 kernel size was chosen with the assumption

that features are highly local, allowing accurate detection

of subtle features. A lower number of weights due to the

smaller receptive field requires less computationally

power. A larger output dimension due to a smaller filter

ensures more information is available for later layers and

improved combinatorics due to increased non-linearity [7]

[19]. 32 filters were used to balance hardware limitations

and number of weights for better training. The stride value

was 1, to ensure filters would cover every part of the image

for better accuracy. No padding was used as features were

most likely to be centered [7]. A MaxPooling2D layer with

a pool size of 2X2 and stride of 2 was added. A pool size

of 2X2 will reduce the feature map by half to reduce the

number of parameters and computation expense as well as

introduce invariance. Another 2 Conv2D and

MaxPooling2D layers were added with similar parameters.

However, the final Conv2D layer uses 64 filters instead. As

this was the final convolutional layer before the FC layers,

the number of filters was doubled for better performance.

Then a Flatten layer was added to convert 3D feature

maps into a 1D feature vector for classification. This is fed

into a FC layer, a Dense layer with 128 neurons, to ensure

good performance whilst avoiding hardware limitations.

For the output layer, a single unit Dense layer or a 7-unit

Dense layer was used for the binary and multiclass

classification respectively. Both used cross entropy loss,

but the binary model used the binary_crossentropy

parameter and the multiclass used

categorical_crossentropy. Both models used the Adam

optimizer with a learning rate of 0.00001. This allows

convergence to occur within 60 epochs. A range of values

was tested with higher rates unable to converge and lower

rates taking more epochs to converge. The model was then

compiled via the compile method and trained using the

fit_generator method. fit_generator trains the model on

generated images via batches and the batch size was set at

32, a value most often used. Epochs, the number of

iterations of training to run, was set at 100. Steps taken was

the size of the batches divided by its total. An

early_stopping method was used for early stopping of

training to prevent overfitting. For class_weights, which

are the weights assigned to each class during training,

several options were designed. As the dataset was

imbalanced, it was important to use class weights to

heavily notice classes with lower representation to avoid

detrimental performance [20]. Although this may also be

solved via oversampling, class weights were also an

effective method. The chosen method was using a Scikit-

learn method, class_weight to calculate the weights

according to the distribution of images. Keras’

predict_generator method performs predictions on the test

dataset and the results saved as a Pandas dataframe. Using

the method to_csv allows the results and its accuracy score

obtained from Keras to be exported as a CSV file.

3.1.1 Training convergence and overfitting possibilities

Figure 6 depicts the learning curves for the model using

the eyeglasses classification task. To prevent overfitting,

early stopping was used. Early stopping prevents further

training for the model and wasting power. First, the model

was run without early stopping to overfit. In the

Eyeglasses task, the model overfits after epoch 60 on

average as the training loss begins to stagnate even though

the training loss keeps decreasing. After implementing

early stopping, the model converges on average at epoch

43, achieving accuracy of 98.98%. In Keras, using the

early_stopping callback method, the patience parameter

was set to 5, for further training of 5 additional epochs after

the validation loss does not decrease.

Unlike binary classification, which took 60 epochs to

converge on average, the multiclass task required 15

epochs to converge, and further training lead to overfitting.

Figure 6. Training loss and accuracy against validation loss and

accuracy using the CNN model for eyeglasses prediction.

5

3.2. Multilayer Perceptron

Using a Keras Sequential object, a Flatten layer was

added to reduce the dimensions of the input image into a

vector. Then, two Dense layers with 128 units and ReLU

activation was added. Based on the task, the output Dense

layer’s units and activation were either 1 and Sigmoid or 7

and Softmax. Justification is the same as the CNN model.

Like the CNN, the MLP was trained with a cross entropy

loss optimised with a 0.00001-learning rate Adam.

Compile, training, class weight and predict methods are as

the CNN, with the only difference being that the maximum

epoch was set at 200 as MLPs took longer to train.

3.3. Inception v3

Inception v3 is built into Keras and requires importing.

For this model, Keras’ functional Model API was used, as

it allows more complex models to be created [21]. An

InceptionV3 method was called with parameters imagenet

for weights, an average pooling (to reduce parameters) and

include_top being False. The top layers from literature are

not needed as the model will be trained with a new output

layer. A Dense layer was used as the output layer with its

units and activations determined by the type of problem as

described in the CNN model. A Model was created with

the InceptionV3 model as the input and the Dense layer as

output. The compile, training and prediction methods and

parameters are as in CNN as both are Neural Networks.

The only difference is that this model’s train epoch was set

at 50 because it achieved convergence faster than the CNN.

4. Experiments

A comparison of the models was done to assess

performance differences. Several experiments were also

conducted to assess the impact of hyperparameters and

other factors on the performance of the CNN. The CNN

was evaluated on the same task; Eyeglasses. This was

chosen because, in testing, Eyeglasses was not the easiest

(human) nor the hardest (hair color) task. All tests were run

5 times and relevant metrics averaged out. Additional tests

are also presented in the Supplementary.

4.1. Comparison between models

The models compared are the CNN, MLP and Inception

v3. Average loss, accuracy, F1, epoch duration, and

convergence epoch was recorded and compared.

4.2. Filters

Filters function as feature extractors. Larger filters are

preferable for larger features and smaller filters for more

localised features. Several filter sizes were compared; 1X1,

3X3, 5X5, and 9X9. 1X1 filters are used for dimensionality

reduction and add non-linearity. According to Yann

LeCun, 1X1 convolutions and FC layers are similar [22].

4.3. Fully Connected Layer Size

The FC layer acts as the classifier with the size being the

number of neurons in the layer. The model performance

was compared with different FC layer sizes. There is no

standard for this parameter and as such, is explored.

5. Results

5.1. Convolutional Neural Network
Task Loss Acc F1 Top-2 Top-3

Emotion 0.242 0.887 0.942 - -

Age 0.301 0.821 0.906 - -

Eyeglasses 0.0453 0.989 0.997 - -

Human 0.00012 0.998 0.999 - -

Hair Colour 0.914 0.652 0.755 0.843 0.938

Table 1. CNN performance on 5 different classification tasks.

Table 1 depicts the performance of the CNN on the

classification tasks. Training time was 9 seconds per epoch.

For binary classification, the model performed best on the

Human classification task, achieving accuracy and F1

scores of nearly 100%. An explanation for this is that the

non-human images (Cartoon Set) are uniform in shape,

have flat colours and are facing forwards. More complex

features can be observed from the CelebA images. It is

possible these distinct differences made classification easy.

For binary classification, the model performed worst on

the Age task, with accuracy of 86.1%. Across both sets,

differences between young and old subjects were very

subtle, especially in the Cartoon Dataset, as cartoons

lacked age-related features such as wrinkles. The model

made more errors in old subjects, with an 18.2% error rate.

In the multiclass task, the model performed poorly with

accuracy of only 65.2% and F1 score of 75.5%. However,

the accuracy increases significantly in the Top-2 and Top-

3 scores. Upon inspection of the prediction CSV and

answer files, it was discovered that the noise labels heavily

influenced the predictions. Many of the incorrect

predictions had the noise class as a prediction, with the

correct class being the second highest probability. As there

were multiple classes, there was less training data per class,

which led to relatively poorer generalisation in the model.

5.2. Comparison between models

Model Loss Acc F1
Epoch

duration
Conv

CNN 0.0453 0.989 0.997 9 43

MLP 0.328 0.853 0.877 13 105

Inception v3 0.0159 0.997 0.998 49 14

Table 2. Performance comparisons between CNN, MLP and Inception v3.

 Inception v3 had the best performance in both accuracy

and F1 scores. Although it can be argued that the

performance improvement over CNN is marginal, with

only a 0.8% improvement in accuracy and very marginal

F1 improvement. Inception v3 required more

computational power, taking more time to train. Although

it achieved faster convergence, it took 49 seconds per

epoch on average, making its overall training time longer

than the CNN model (9s). The excellent performance of

CNN and Inception v3 over MLP proves the superiority of

newer Neural Network architectures over classical

Machine Learning algorithms such as MLP in image

6

classification tasks. MLP took the longest to converge and

yet had the worst performance.

5.3. Filters
Filter Size Loss Accuracy F1

1X1 0.415 0.798 0.843

3X3 0.0453 0.989 0.997

5X5 0.275 0.9024 0.954

9X9 0.402 0.812 0.875

Table 3. Comparison of different kernel sizes.

 Based on Table 3, the 3X3 filter produced the best

results. The 1X1 filter only reduces the feature map and

thus performs the worst as this would mean no proper

feature extraction was performed. Although eyeglasses as

a feature is not as a subtle or small as age or smiles, the

smaller filter window had the best performance. A reason

could be because the smaller filter was able to better pick

up on what makes up the shape and colour of glasses,

instead of a general shape, leading to better predictions.

5.4. Fully Connected Layer Size
Neurons Loss Accuracy F1

32 0.375 0.842 0.727

64 0.426 0.805 0.785

128 0.0453 0.989 0.997

256 0.0475 0.991 0.998

Table 4. Comparison between FC layer size performance.

 Utilising more neurons produced better results with 256

neurons having the best performance. However, the

increase in accuracy and F1 score is only marginal

compared to 128 neurons. Utilising more neurons uses

more computational power and may not be more cost-

effective. An interesting observation is that 32 neurons

produced better accuracy than 64 neurons, but it had a

worse F1 score. The imbalanced dataset may have affected

the accuracy calculations and is further reason why F1 as a

metric is important in unbalanced dataset problems.

6. Related Work

With the advent of Big Data, image datasets used for

classification have grown significantly. This lead to a

problem with noisy labels, especially for images scraped

from the internet. Wu et al. proposed a CNN framework to

embed a universal face representation in a light CNN

containing a smaller number of parameters and semantic

bootstrapping to relabel or remove noisy labels [24]. This

resulted in a faster and smaller CNN. However, this model

performed only marginally better or even worse to models

such as GoogLeNet. Also, Semantic bootstrapping requires

training on a “clean” dataset before being able to relabel

and requires tuning to avoid incorrect labels. This model

has potential for real-time recognition systems.

Humans are highly capable of one-shot learning, being

able to distinguish objects given only one example, unlike

DNNs, which require high amounts of labelled data. As

such, Siamese Neural Networks have been developed to

perform one-shot image recognition. Siamese networks

contain two branches of CNNs to obtain two feature

vectors. The two vectors are merged to obtain the distance

between each point. A smaller distance indicates a highly

similar image. Koch et al.’s approach to implementing one-

shot learning was to train the model to predict whether the

images in each branch were of the same class [25].

An advantage of this model is that very little training

data was required. In a verification task, this model

performed better than other one-shot learning models such

as Affine and Hierarchical Networks but worse than

Hierarchical Bayesian Program Learning. However, the

model was trained on the Omniglot dataset, which consists

of characters, and requires further development to one-shot

learn images of humans. Another flaw is that it requires

examples from every class to be used for comparison,

which can quickly grow if more classes are added.

Although deeper neural networks can lead to better

performance, they become more difficult to train due to the

massive number of weights. Residual Networks such as the

model presented by He et al. proposes building layers with

residual mappings to learn residual functions from the

input layers [26]. Residual mappings allow a deeper

network to be created with equal or fewer parameter than

its shallower counterparts. In the paper, a Residual network

of 152 layers was 8 times deeper than a VGG network but

used fewer parameters. The model is easier to optimise due

to each residual block being optimised by the previous and

achieved superior performance in image recognition,

winning 1st place in the ImageNet 2015. Several variations

have been presented such as ResNeXt and DenseNet [27]

[28]. However, the model has 152 layers, which still

required massive computational power, although it has

relatively low convergence times. As such, many new

networks only utilise the residual mapping idea introduced

to reduce convergent times and increase network depth.

7. Conclusion

In conclusion, CNN and Inception v3 performed much

better than MLP in the classification tasks with Inception

v3 performing marginally better. However, Inception v3 is

computationally more expensive and takes longer to train

than CNN. The models performed better on binary

classification tasks compared to the multiclass task, mainly

due to the lack of training data per. For the CNN model,

binary classification was best for the Human task and

multiclass classification was best when equal class weights

were used. Experiments showed that automatically

calculating class weights, 3X3 filter sizes, increasing FC

layer size, only using image augmentation as a regulariser,

a cross entropy loss and a Sigmoid activation for the FC

layer lead to the best performance.

For better statistical significance and accuracy, cross-

validation and stratified k-fold methods could be

implemented due to the small dataset size. Other networks

could also be implemented to compare performance such

as Inception-ResNet, ResNet, Squeeze-and-Excitation

networks and Neural Architecture Search (NAS).

7

Supplementary

1. Dataset

1.1. Dataset Class Distribution

The images are labelled via a CSV file, attribute_list.csv,

containing each image’s class labels according to several

attributes. The distributions of images in each class are

illustrated according to Tables 1, 2, 3, 4 and 5.

There are 435 noise images, which is 8.7% of the entire

dataset. Removal of noise would leave a total of 4565

usable images for the binary classification tasks. From the

4565 images, 663 contain label noise for the multiclass

classification task. The label noise is represented as a N/A

class in the hair attribute. Thus, there are technically only

4337 labelled images for multiclass classification.
Class Total Percentage

smiling 3634 79.61%

not smiling 931 20.39%

Table 1. Counts and percentages of the smiling attribute

Class Total Percentage

young 3614 79.17%

not young (old) 951 20.83%

Table 2. Counts and percentages of the age attribute.

Class Total Percentage

eyeglasses 1328 26.56%

no eyeglasses 3237 70.91%

Table 3. Counts and percentages of the glasses attribute.

Class Total Percentage

human 2000 43.81%

not human 2565 56.19%

Table 4. Counts and percentages of the human attribute.

Class Total Percentage

N/A 663 15.29%

Bald 88 2.03%

Blond 995 22.94%

Ginger 547 12.61%

Brown 943 21.74%

Black 788 18.17%

Grey 541 12.47%

Table 5. Counts and percentages of the hair attribute.

A more detailed presentation of class distributions is

given in Tables 1, 2, 3, 4, and 5. Heavily imbalanced data

may lead the model to only predict a single class as it will

lead to the highest accuracy [29].

2. Preprocessing

2.1. Determining Training-Testing Ratio
Ratio Avg loss

0.5 0.1152

0.4 0.0803

0.3 0.0791

0.2 0.0740

0.1 0.0779

Table 6. Training-testing ratios against average test loss

The goal in determining a suitable training-test ratio is

to ensure that there is enough testing data to prevent high

variance in model performance but enough training data to

prevent high variance in parameter estimates.

Determination of the training-testing ratio is important

to maximise the bias-variance tradeoff. This helps in

preventing overfitting due to high variance and underfitting

due to high bias [30]. B. Neal et al. discovered that the

variance caused by the loss decreases with more hidden

units and increases with layers [31]. However, variance

remained the same due to sampling.

Using the CNN performed on a simple binary

classification task described in the main paper with all

parameters the equal, the training-test ratio was modified,

and the test loss was recorded. Each ratio was used to run

5 separate training sessions and the average loss was

calculated.

It was found that the model on average, performed the

best with a 0.2 ratio, at an average loss of 0.074. However,

the differences in loss between 0.1, 0.2 and 0.3 and even

0.4 may be too small for a definitive answer.

2.2. Determining Training-Validation Ratio
Ratio Avg loss

0.5 0.0954

0.4 0.0784

0.3 0.0778

0.2 0.0576

0.1 0.0670

Table 7. Training-validation ratios against average test loss

The goal in determining a suitable training-test ratio is

to ensure that there is enough testing data to prevent high

variance in model performance but enough training data to

prevent high variance in parameter estimates.

Using the CNN described in the main paper, the

training-validation ratio was modified, and the test loss was

recorded. Each ratio was used to run 5 separate training

sessions and the average loss was calculated.

The 0.2 ratio provided the best performance with an

average loss of 0.0576.

3. Proposed Algorithms

3.1. CNN Tensor Output Sizes

The size of the output tensor of a convolution layer is

depicted in Equation 1.

O =
𝐼 − 𝐾 + 2𝑃

𝑆
 + 1 [1]

Where O is the size of the output, I is the size of the input, K is

the size of the filter, P is padding, S is stride.

The output size of every pooling layer is given in

Equation 2.

O =
𝐼 − 𝑃

𝑆
 + 1 [2]

Where O is the size of the output, I is the size of the input, P is

the pool (kernel) size, S is stride.

3.2. Backpropagation

 Backpropagation is the supervised learning training

process in neural networks to calculate the gradient to

adjust the value of weights or filters to minimise a given

loss function. The result desired would be a model that has

8

a low loss and high accuracy in solving a certain task. This

involves 4 distinct subprocesses; Forward pass, loss

function, backward pass and weight update [32].

 First, in the forward pass, an input is passed through the

whole network. All weights or filter values initially have

random values. No conclusion can be drawn from this.

Then, the loss function is applied. A loss function is a

method to evaluate the performance of an algorithm. A

higher value would indicate poor performance and

conversely, good performance [33]. A CNN can be

summarised as a function in Equation 3.

𝑦 = 𝑓(𝑥, 𝑤) [3]
Where y is the output, x is the input, w is the network weights.
To reduce the loss, a minimisation problem must be

solved. The derivative (gradient) of the loss function with

respect to the weights and inputs must be calculated and

taken. Thus, backward pass is used. It is assumed that the

gradient of the lass with respect to the output is obtained

from previous layers. Through the usage of the chain rule

of derivates, the gradient of the loss with respect to the

weights and inputs (outputs from the previous layer) is

calculated. Any change in the weight associated with a

filter will affect the output. These changes contribute to the

final loss. This is shown in Equations 4 and 5.

𝜕𝐸

𝜕𝑦𝑛−1
=

𝜕𝐸

𝜕𝑦𝑛
×

𝜕𝑦(𝑤, 𝑦𝑛−1)

𝜕𝑦𝑛−1

𝜕𝐸

𝜕𝑤𝑛
=

𝜕𝐸

𝜕𝑦𝑛
×

𝜕𝑦(𝑤, 𝑦𝑛−1)

𝜕𝑤𝑛

Where E is the loss, w is weight, y is output, n is

current layer index

[4]

[5]

 This determines the weights contributing most to the

loss. Then, weight update occurs. Weights are updated to

reduce the loss function. The entire process is then

iterated for a predetermined number of steps.

3.3. Momentum

 In Momentum, instead of just using the current step’s

gradient, momentum accumulates gradients of past steps.

3.4. RMSProp

 RMSProp is an adaptive learning rate method [34]. It

uses a moving average of squared gradients to normalise

itself to balance the step size. The step will be smaller for

large gradients to avoid explosions, or larger for small

gradients to avoid vanishing of the gradient.

3.5. Inception Modules

 Inception modules perform convolutions on an input

using 3 different filter sizes; 1X1, 3X3 and 5X5. Max

pooling is also performed on the input and the results are

concatenated as a single output. Figure 1 depicts an

implementation of the module in GoogLeNet using

dimension reductions [16].

Figure 1. Inception module with dimension reductions.

 Dimension reductions are done using 1X1 convolutions

before the filters and after the max pooling to further

reduce the input feature size and reduce computational

expense.

4. Results

4.1. Accuracy and F1 as Metrics

Accuracy is an intuitive metric for performance,

however as demonstrated earlier in the paper, the dataset

given is heavily imbalanced for most of the tasks and may

skew results. As such, F1 is also introduced as a metric.

F1 is a metric that is the harmonic mean of precision

and recall. This takes all classes into account as a weighted

average. The formula for F1 is shown in Equation 6.

𝐹1 = 2𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Where Precision is ratio of True Positives and Recall

is ratio of True Negatives.

[6]

F1 scores were calculated based on the confusion matrix

generated after model training.

4.2. Convolutional Neural Network

The learning graphs for the CNN model from the other

classification tasks are presented in Figure 2, 3,4 and 5.

Figure 2. Emotion classification task learning graphs.

Figure 3. Age classification task learning graphs.

Figure 4. Human classification task learning graphs.

9

5. Additional Tests and Clarifications

5.1. Class Weights

As presented in the Dataset section, the dataset is heavily

imbalanced for most of the tasks. An unbalanced dataset

may lead to the model bias towards a single class to achieve

better accuracy. As such, several strategies to assign class

weights were compared. The multiclass classification task

was also included in the experiment because the multiclass

problem had noise labels which required different

strategies to resolve.

For binary classifications, Auto Binary uses Scikit-

learn’s class_weights method to automatically balance the

classes using calculated class weights based on the training

dataset distribution. Equal Binary means that the same

class weight, 1, is used across all classes. Dataset Binary is

the class weights manually calculated based on the entire

dataset distribution, not just the training dataset.

Auto, Equal and Dataset class weight methods are the

same for the multiclass classification task. However, the

hair color problem contains noise labels which are

addressed in two additional methods; Dataset NaN

suppress uses the dataset distribution but assigns 0 to the

noise class for the model to ignore the class in training.

NaN Suppress is based on the auto Scikit-learn method

with the noise class also set to 0.
Class Weight Loss Accuracy F1 Conv.

Auto Binary 0.0453 0.989 0.997 43

Equal Binary 0.0591 0.978 0.989 45

Dataset Binary 0.361 0.850 0.851 35

Auto Multi 0.914 0.652 0.755 16

Equal Multi 0.660 0.748 0.812 87

Dataset Multi 0.915 0.680 0.740 -

Dataset NaN

Suppress
1.224 0.711 0.699 -

NaN Suppress 0.335 0.747 0.836 -

Table 8. Class weight methods comparison in performance.

 In the binary classification task, the auto-balanced

weights had the best performance and balancing the

weights based on the entire dataset produced the worst

results. As the dataset is unbalanced for eyeglasses, the

result was expected. Since the training dataset is a subset

of the entire dataset, it makes little sense to balance the

weights based on the entire dataset as the randomised

preprocessing methods may randomly select an even more

unbalanced range of images.

 For the multiclass classification task, using equal

weights across classes produced the best result at the cost

of convergence times. A possible explanation would be

that balancing the weights based on class counts made it

harder for the model to learn as there is very little data per

class to learn on. Removal of the noise class via class

weights, although increased performance, did not achieve

convergence. It could be because although noise labels

were not considered in training, the model was validating

the outputs against validation sets that still had noise labels

as answers to compare against. This means that accuracy

could be underrepresented.

5.2. Image Augmentations

Based on the Image Augmentation section in the paper,

several augmentation strategies were compared. None

means no augmentation was performed and Normal is the

augmentation strategy outlined earlier. Heavy is a

modification of the normal image augmentation strategy to

include rotation and shifting the widths and heights of the

image.
Augmentation Loss Accuracy F1

None 0.0575 0.983 0.985

Normal 0.0453 0.989 0.997

High 0.154 0.897 0.889

Table 9. Comparison between image augmentation methods.

 The results of the experiment are shown in Table 9. The

normal image augmentation strategy from the main paper

had the best performance, although marginal compared to

the high augmentation method. However, the F1 score in

the high augmentation method was more than marginal in

difference. This could mean that the high augmentation

method had the worst performance. An explanation is that

the additional augmentations to the image was not

meaningful and prevented the model from properly

learning the features from images. It could be the additional

augmentations were too extreme and did not reflect the

unaugmented test dataset.

5.3. Loss function

Different loss functions were used and compared to

identify the differences in performance. The loss functions

compared were Mean Squared Error (MSE), Mean

Squared Logarithmic Error (MSLE), Hinge, Squared hinge

and Cross entropy (logarithmic).
Loss Loss Accuracy F1 Conv.

Cross Entropy 0.0453 0.989 0.997 43

MSE 0.0118 0.988 0.992 61

Hinge 0.682 0.318 0 -

Poisson 0.520 0.837 0.873 -

KL Divergence 0.001 0.315 0 -

Table 10. Comparison between loss function performance.

 Cross entropy had the best accuracy and F1 score, at

0.989 and 0.997 respectively. However, the accuracy

improvement was only marginal compared to MSE. Cross

entropy also managed to converge the quickest, taking on

average 43 epochs.

 The model was unable to converge using Hinge loss

and had terrible performance. Both Hinge and KL

Divergence losses did not manage to converge and

Figure 5. Hair color classification task learning graphs.

10

produced poor accuracy. The F1 score of 0 indicates that

the losses swung predictions into a single class. Hinge loss

is typically used for SVMs. The learning rate could be

lowered for both losses. However, for this experiment, all

other parameters are kept the same.

5.4. Activation function

Different activations in the output layer were compared

to assess performance differences. Sigmoid, Softmax,

Exponential Linear Unit (ELU), Hyperbolic Tangent

(Tanh) and ReLU were used.
Activation Loss Accuracy F1 Conv.

Sigmoid 0.0453 0.989 0.997 43

Softmax 0.0591 0.978 0.989 45

ELU 0.00521 0.785 0.842 30

Tanh 5.397 0.178 0 -

ReLU 0.0494 0.787 0.836 32

Table 11. Comparison between final layer activation

performance.

Based on the results in Table 11, Sigmoid managed to

perform the best with the highest accuracy and F1 scores,

even though it did not converge the fastest. ELU converged

the fastest in 30 epochs, however, it did not perform the

best. This behaviour is expected as ELU manages faster

learning as shown by Clevert et al [35]. Since there are no

negative inputs in features, it is not surprising that RELU

produced a similar performance as ELU. Tanh did not

manage to converge and had the worst performance. It

could be due to a vanishing gradient as the Tanh curve is

steeper compared to a Sigmoid.

5.5. Regularisation

Regularisation reduces overfitting. 3 different methods

are compared; Dropout, L1 and L2. Dropout randomly

drops out neurons during each weight update. For this

experiment, a light dropout where a 20% dropout after the

FC layer and heavy dropout where 20% dropout was added

after every layer is compared. L1 and L2 regularisation add

a regularisation term to the cost function which modifies

the weights in the network [23].
Regulariser Loss Accuracy F1 Conv.

None 0.0575 0.983 0.985 43

Light Dropout 0.291 0.889 0.887 198

Heavy Dropout 0.584 0.712 0.811 89

L1 0.674 0.714 0.719 81

L2 0.499 0.825 0.774 83

Table 12. Comparison between regulariser methods.

 Based on the results in Table 12, using any regulariser

worsened performance and increased convergence time.

Even a single dropout reduced performance by 10%. Since

the model did not suffer from overfitting in the first place,

additional regularisation is unnecessary as image

augmentation already acted as a regulariser. The small

training dataset size did not allow the possibility of

overfitting so that the regularisation methods can be taken

advantage of.

6. Related Work

6.1. Light CNN and Semantic Bootstrapping

A Max-Feature Map (MFM) operation was introduced,

an operation to suppress neurons so that CNN models are

relatively lighter. The operation is based on the neural

science of Lateral Inhibition. Unlike ReLU, this will avoid

loss of information and instead separate noisy and

informative signals. Semantic bootstrapping, based on

child linguistic development theory, is an approach to

model training samples during the forward process by

resampling. This allows the trained model to sample

training data from noisy datasets and relabel the noise. A

new dataset can then be reconstructed.

6.2. Siamese Neural Networks

Typical deep neural networks contain a massive number

of parameters to gradient descent upon, which is

problematic when it needs to generalise based only a single

example. Siamese networks utilise transfer learning by

training each branch as a classifier and merged into a fully

connected layer calculating the L1 Siamese distance. L1

distance is given in Equation 7.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∑ |𝑥1 − 𝑥2|

Where x is the feature vector

[7]

 Siamese networks are designed to be symmetric and as

such, the hyperparameter tuning was the same for each

branch. The “head” of the network is a simple linear

classifier which outputs a prediction between 0 to 1 on

whether the two images are similar.

6.3. Residual Networks

Deeper networks are exposed to a degradation problem

where accuracy saturates and then rapidly degrades. He et

al. posits that reframing layer mappings can lead to easier

optimisation [26].

Figure 6. A fundamental block of a residual network.

 Figure 6 depicts a residual mapping using 2 layers. A

typical neural network would only have an F(x) mapping,

where x is the input. By skipping layers, a residual F(x) +

X mapping was created.

 For optimisation, it is easier to optimise the residual F(x)

function rather than optimise a whole stack of non-linear

CNN layers with a function F(x) = y. Subsequent bocks in

the network can fine-tune the output of a previous block.

11

References
[1] J. Han, M. Kamber and J. Pei, Data mining, 3rd ed.

Amsterdam: Elsevier/Morgan Kaufmann, 2012.

[2] E. Kalapanidas, N. Avouris, M. Craciun and D. Neagu,

"Machine Learning algorithms: a study on noise sensitivity",

2003. Available:

http://delab.csd.auth.gr/bci1/Balkan/356kalapanidas.pdf.

[3] J. Brownlee, "What is the Difference Between Test and

Validation Datasets?", Machine Learning Mastery, 2017.

[Online]. Available:

https://machinelearningmastery.com/difference-test-

validation-datasets/.

[4] J. and L. Perez, "The Effectiveness of Data Augmentation in

Image Classification using Deep Learning", 2017.

Available: https://arxiv.org/pdf/1712.04621.pdf.

[5] D. Hubel and T. Wiesel, "Receptive fields of single neurones

in the cat's striate cortex", The Journal of Physiology, vol.

148, no. 3, pp. 574-591, 1959. Available:

10.1113/jphysiol.1959.sp006308.

[6] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-

based learning applied to document recognition",

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,

1998. Available: 10.1109/5.726791.

[7] A. Karpathy and F. Li, "CS231n: Convolutional Neural

Networks for Visual Recognition", Cs231n.github.io, 2017.

[Online]. Available: http://cs231n.github.io/.

[8] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet

classification with deep convolutional neural networks",

Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017.

Available: 10.1145/3065386.

[9] X. Glorot, A. Bordes and Y. Bengio, "Deep Sparse Rectifier

Neural Networks", Proceedings of the Fourteenth

International Conference on Artificial Intelligence and

Statistics, vol. 15, 2011. Available:

http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf.

[10] A. Sharma, "Understanding Activation Functions in Neural

Networks", Medium, 2017. [Online]. Available:

https://medium.com/the-theory-of-

everything/understanding-activation-functions-in-neural-

networks-9491262884e0.

[11] P. Koprinkova-Hristova, V. Mladenov and N. Kasabov,

Artificial Neural Networks: Methods and Applications in

Bio-/Neuroinformatics. Cham: Springer International

Publishing, 2015.

[12] D. Kingma and J. Lei Ba, "Adam: A Method for Stochastic

Optimization", in International Conference on Learning

Representations, San Diego, 2015. Available:

https://arxiv.org/pdf/1412.6980.pdf.

[13] A. Honkela, "Multilayer perceptrons", Nonlinear Switching

State-Space Models, 2001. [Online]. Available:

http://users.ics.aalto.fi/ahonkela/dippa/node41.html.

[14] G. Cybenko, "Approximation by superpositions of a

sigmoidal function", Mathematics of Control, Signals, and

Systems, vol. 2, no. 4, pp. 303-314, 1989. Available:

10.1007/bf02551274.

[15] G. Panchal, A. Ganatra, Y. Kosta and D. Panchal,

"Behaviour Analysis of Multilayer Perceptrons with

Multiple Hidden Neurons and Hidden Layers", International

Journal of Computer Theory and Engineering, pp. 332-337,

2011. Available: 10.7763/ijcte.2011.v3.328.

[16] C. Szegedy et al., "Going deeper with convolutions", 2015

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. Available:

10.1109/cvpr.2015.7298594.

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna,

"Rethinking the Inception Architecture for Computer

Vision", 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. Available:

10.1109/cvpr.2016.308.

[18] Keras, “Guide to the Sequential model - Keras

Documentation", Keras.io, 2018. [Online]. Available:

https://keras.io/getting-started/sequential-model-guide/.

[19] IceCream Labs, "3×3 convolution filters - A popular choice -

IceCream Labs", IceCream Labs, 2018. [Online]. Available:

https://icecreamlabs.com/2018/08/19/3x3-convolution-

filters%E2%80%8A-%E2%80%8Aa-popular-choice/.

[20] M. Buda, A. Maki and M. Mazurowski, "A systematic study

of the class imbalance problem in convolutional neural

networks", Neural Networks, vol. 106, pp. 249-259, 2018.

Available: 10.1016/j.neunet.2018.07.011

[21] "Model (functional API) - Keras Documentation", Keras.io,

2019. [Online]. Available: https://keras.io/models/model/.

[22] A. Prakash, "One by One [1 x 1] Convolution - counter-

intuitively useful", Iamaaditya.github.io, 2016. [Online].

Available: https://iamaaditya.github.io/2016/03/one-by-

one-convolution/.

[23] S. Jain, "An Overview of Regularization Techniques in Deep

Learnin", Analytics Vidhya, 2018. [Online]. Available:

https://www.analyticsvidhya.com/blog/2018/04/fundament

als-deep-learning-regularization-techniques/.

[24] X. Wu, R. He, Z. Sun and T. Tan, "A Light CNN for Deep

Face Representation With Noisy Labels", IEEE

Transactions on Information Forensics and Security, vol.

13, no. 11, pp. 2884-2896, 2018. Available:

10.1109/tifs.2018.2833032.

[25] G. Koch, R. Zemel and R. Salakhutdinov, "Siamese Neural

Networks for One-shot Image Recognition", ICML Deep

Learning Workshop, vol. 2, 2015. Available:

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf.

[26] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual

Learning for Image Recognition", 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.

Available: 10.1109/cvpr.2016.90

[27] S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He. Aggregated

Residual Transformations for Deep Neural Networks. arXiv

preprint arXiv:1611.05431v1,2016.

[28] G. Huang, Z. Liu, K. Q. Weinberger and L. Maaten. Densely

Connected Convolutional Networks.

arXiv:1608.06993v3,2016.

[29] J. Brownlee, "8 Tactics to Combat Imbalanced Classes in

Your Machine Learning Dataset", Machine Learning

Mastery, 2018. [Online]. Available:

https://machinelearningmastery.com/tactics-to-combat-

imbalanced-classes-in-your-machine-learning-dataset/.

[30] T. Hastie, J. Friedman and R. Tibshirani, The elements of

statistical learning, 2nd ed. New York: Springer Science &

Business Media, 2009.

[31] B. Neal et al., "A Modern Take on the Bias-Variance

Tradeoff in Neural Networks", 2018. Available:

https://arxiv.org/pdf/1810.08591.pdf.

[32] M. Nielsen, Neural Networks and Deep Learning, 1st ed.

Mountain View: Determination Press, 2015.

http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://arxiv.org/pdf/1412.6980.pdf
http://users.ics.aalto.fi/ahonkela/dippa/node41.html
https://keras.io/getting-started/sequential-model-guide/
https://icecreamlabs.com/2018/08/19/3x3-convolution-filters%E2%80%8A-%E2%80%8Aa-popular-choice/
https://icecreamlabs.com/2018/08/19/3x3-convolution-filters%E2%80%8A-%E2%80%8Aa-popular-choice/
https://keras.io/models/model/
https://iamaaditya.github.io/2016/03/one-by-one-convolution/
https://iamaaditya.github.io/2016/03/one-by-one-convolution/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

12

[33] Algorithmia, "Introduction to Loss Functions | Algorithmia",

Algorithmia, 2018. [Online]. Available:

https://blog.algorithmia.com/introduction-to-loss-

functions/.

[34] G. Hinton, "Overview of mini-batch gradient descent",

University of Toronto, 2014.

[35] D. Clevert, T. Unterthiner and S. Hochreiter, "Fast and

Accurate Deep Network Learning by Exponential Linear

Units (ELUs)", International Conference on Learning

Representations (ICLR) 2016, 2015. Available:

https://arxiv.org/pdf/1511.07289.pdf.

https://blog.algorithmia.com/introduction-to-loss-functions/
https://blog.algorithmia.com/introduction-to-loss-functions/
https://arxiv.org/pdf/1511.07289.pdf

