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Abstract 

 

Facial features are complex structures which give 

importance in the identification of identity, emotion, age, 

and other social information. As such, various work has 

been done to introduce the ability to computers, with 

neural networks achieving exceptional success. 

 In this paper, we compare a Convolutional Neural 

Network, Multilayer Perceptron and Inception v3 in 5 

image classification tasks; Binary (emotion, age, glasses, 

human) and Multiclass (hair color). Several experiments 

were also done with the CNN to identify the best 

hyperparameter and other parameter methods. 

 Based on tests, Inception v3 performed the best, 

although its improvements were marginal compared to the 

CNN, which required less computational power and 

training time. All models performed better on binary 

classification compared to multiclass, mainly due to the 

lack of training data per class. In the CNN, experiments 

showed that automatically calculating class weights based 

on training data, using a 3X3 filter size, increasing FC 

layer size, only using image augmentation as a regulariser, 

a cross entropy loss and a Sigmoid activation for the FC 

layer lead to the best performance for image classification 

tasks. 

 

1. Introduction 

In this paper, 5 image classification tasks based on facial 

features are performed using several machine learning 

models. The classification tasks consist of 4 binary 

problems and 1 multiclass problem. The binary tasks 

include; Emotion recognition (smiling or non-smiling), 

Age identification (young or old), Glasses detection (with 

or without glasses) and Human detection (real human 

subjects (CelebA) or cartoon subjects (Cartoon set)). The 

multiclass task involves classification of images between 6 

different hair classes; Blond, Ginger, Grey, Brown, Black 

or Bald (no hair). The machine learning models will then 

be trained to predict the correct class of testing images. 

1.1. Dataset 

The dataset consists of 5000 labelled images which 

contain subsets of two other datasets; CelebFaces 

Attributes Dataset (CelebA) and Cartoon Set. CelebA 

contains images of faces of various celebrities. Cartoon Set 

contains 2D human cartoon avatars. In addition, the dataset 

also contains noise images without any faces e.g. images 

of backgrounds of nature or a single colour. For images 

with faces, in addition to the variety in basic facial features, 

may also include accessories, specifically glasses. The 

images are formatted in PNG and each has a resolution of 

256 X 256 pixels. Images with faces have a bit depth of 24 

while noise images have a bit depth ranging from 8 to 32. 

1.2. Classes 

The images are labelled via a CSV file, attribute_list.csv, 

containing each image’s class labels according to several 

attributes. The dataset is heavily imbalanced for smiling, 

age, glasses and hair classification, as the classes are not of 

equal proportion. Only for the human attribute is the 

dataset near balance with a 12.38% percentage difference. 

1.3. Preprocessing 

In all preprocess methods, Python libraries were used.  

1.3.1 Noise removal 

Although noise can be real-world outliers for which 

there are methods for data integration, in this dataset, noise 

is unwanted [1]. Noise can affect the performance, as 

neural networks are susceptible to false-positives [2]. 

For noise removal, the noise images in the dataset are 

discarded from the use of training, validation, and testing. 

Using the Pandas library, the attribute list CSV file was 

read as a dataframe. Then the dataframe was filtered from 

all noise images by removing rows where every column 

(class) had a label of -1. Noise images had a value of -1 

across all columns. The new dataframe is then saved and 

used as a reference for training, validation, and testing 

models, resulting in a dataframe containing 4565 rows. 

1.3.2 Training-Validation-Testing split 

The dataset is split into training, validation, and testing 

sets. In this paper, the testing set is used as an unbiased 

evaluation of model performance after training while the 

validation set is used for tuning hyperparameters [3]. 

In the Implementation section, the Keras method 

flow_from_dataframe is used to input a Pandas dataframe 

and image directory to generate data for training. This 

requires the dataset to be split into two folders, i.e. training 

and testing. A function creates the folders and randomly 

copies images from the dataset into the new folders 

according to a training-testing split. For copying images, 

the OpenCV library methods cv2.imread and cv2.imwrite 

were used. Scitkit-learn’s train_test_split method was used 

to split the dataframe into random train and test subsets. 

A training-testing split of 80/20 was used, producing 

3652 training images and 913 testing images. This split 

produced the best performance, producing the lowest 
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average loss of 0.0740. Further details are presented in the 

Determining Training-Testing Ratio section of the 

Supplementary. For training-validation, a 75/25 split was 

used instead to maximise performance as shown in the 

Determining Training-Validation section of the 

Supplementary and to ensure that the training, validation, 

and testing split is 60/20/20 for an equal validation and test 

set. For the validation set, the Keras ImageDataGenerator 

built-in validation_split parameter was used, which allows 

a validation set to be created during image augmentation. 

1.3.3 Image augmentation 

Image augmentation is a useful method to inflate the size 

of a dataset and improve image classification without 

needing to source additional images. Research has proved 

the effectiveness of traditional and advanced data 

augmentation techniques [4]. The Keras Image 

Preprocessing ImageDataGenerator method was used to 

generate batches of augmented images in real-time. For all 

sets, images were converted from an RGB value between 

0-255 to a 0-1 range through a 1/255 scaling factor. This 

avoids the need for massive processing power. 

 
Figure 1. Image augmentations of image 1006.png. From left: 

Original, shear, zoom, horizontal flip. 

For the training and validation set images, three different 

image transformations were used; Shearing (skews the 

image), zooms (magnifies features) and a horizontal flip, 

shown in Figure 1. These transformations were applied 

randomly to images. These augmentations produced a 

more varied dataset to increase model performance. 

2. Proposed Algorithms 

2.1. Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a type of 

Deep Neural Network (DNN), inspired by the biological 

process of the human visual cortex [5]. It is useful for 

image classification as the architecture recognises that 

image features are dispersed and leverages convolutions 

way to extract features from multiple locations without 

treating each pixel as a separate input, as demonstrated by 

the pioneering LeNet5 [6]. This makes CNN excellent for 

the image classification problem in this paper. 

A CNN consists of Convolutional, Non-Linear, Pooling, 

and Fully Connected (FC) layers [7]. The architecture of 

the CNN implemented is summarised in Figure 2.  

 

 

 

 

 

 

 

First, an RGB image with dimensions 256X256X3 is 

used as input. The image has a depth of 3 representing the 

3 colour channels. The image is essentially three 256X256 

2D arrays. The convolutional layer applies convolutional 

filters (kernels) on inputs. A 3X3 filter window is moved 

across the image. At every position, the convolution 

operation is applied - the 3X3 window’s values are 

multiplied by the values of the image covered by the filter. 

The convolutional layer filters the image and “picks up” 

details of features from the images, resulting in effective 

pattern checking. Each filter has an associated weight 

which changes during training and outputs a high value 

when the same pattern is recognised. Mathematically, the 

equation for the convolution is as per Equation 1. 

(𝑓 ∗ ℎ) = ∑ ∑ 𝑓(𝑘, 𝑙)ℎ(𝑖 − 𝑘, 𝑗 − 𝑙)

𝑙𝑘

 [1] 

Where f is the image, h is the filter. 
 

Three convolutional layers were used, with the first 2 

layers using 32 kernels and the last layer using 64 kernels 

instead. The stride, or distance the window moves is set at 

1 to avoid losing any detail. No padding was used in 

convolutions. As neural networks model human neural 

activity, activation functions are used to model the firing of 

neurons. In all convolutional layers, the Rectified Linear 

Unit (ReLU) activation is used. 

 
Figure 3. Graphs of the ReLU and Sigmoid activation functions. 

ReLU is used because it is computationally inexpensive, 

require less training time (faster convergence), and 

performs better than other activations such as logistic 

sigmoid [8] [9]. ReLU removes negative numbers from the 

output and passes positive values as shown in Equation 2. 
𝑓(𝑥)  =  {0 𝑓𝑜𝑟 𝓍 < 0,   𝓍 𝑓𝑜𝑟 𝓍 ≥ 0} [2] 

 

 Another major benefit to the ReLU function is that it 

avoids gradient vanishing since the gradient is constant at 

values of 𝓍 above 0, which is 1. During backpropagation, 

the gradients of error loss are calculated with respect to the 

weights and every layer reduces the gradient exponentially 

when other functions are used [10]. ReLU avoids this 

problem as its derivative is either 0 or 1. Consequently, 

ReLU also avoids an exploding gradient. However, a dying 

ReLU problem may arise. If too many activations are 0, no 

gradients are backpropagated and the neurons may become 

stuck and die off, as weights cannot be altered [7]. 

 

 

 

The pooling layer applies a pooling operation over an 

input. Max pooling is the pooling function used. The kernel 

window is moved over the entire input and only takes the 

Figure 2. The CNN architecture with 256X256 RGB images input 

to 3 convolutional layers, 3 max pooling layers, and 2 FC layers. 

Figure 4. Visualisation of the convolution operation using a 3X3 

filter and a pooling operation using a 2X2 pool with a stride of 2. 
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largest value from the image covered by the kernel 

window. Figure 4 depicts an example of the max pooling 

operation. Pooling reduces feature map (image) size and 

introduces invariance by obscuring the location of features 

extracted by the convolution layer. This results in a 

network that is computationally inexpensive and 

insensitive to a feature’s exact location. 

 2X2 pools with a stride of 2 are used. A greater stride 

will increase invariance. The first two max pooling layers 

use 32 kernels and the last uses 64. The output of the third 

pooling layer is then flattened into a feature vector to be 

used by the dense FC layers to perform classification [7]. 

 The dense layers’ neurons are connected to each other 

and other neurons in the previous layer. The first FC layer 

consists of 128 neurons which are activated using ReLU 

and the output is passed to another FC layer which either 

uses 1 neuron with a Sigmoid activation for binary 

classification or multiple neurons with a Softmax 

activation for multiclass classifications. 

 In addition to introducing nonlinearity (which benefits 

learning), the Sigmoid tends to bring activations to either 

side of its curve as shown in Figure 3, as values near the 

middle of the curve relatively steep. Equations 3 and 4 

show the Sigmoid function equation and its derivative. 

𝑓(𝑥)  =  
1

1 + 𝑒−𝑥 [3] 

𝑓′(𝑥)  =  𝑓(𝑥)(1 − 𝑓(𝑥)) [4] 

The output of this function will be in the range of 0-1, 

preventing a blow-up. Its output is suitable for binary 

predictions for clear distinctions in predictions. Its 

derivative is computationally inexpensive. However, it can 

lead to vanishing gradients. As the curve tapers out at each 

end, the gradients are small, which massively reduces loss 

gradients during backpropagation [11]. 

 For multiclass classification, a Softmax function is used 

instead. The function acts like a Sigmoid by ensuring 

outputs are bound between a value of 0 and 1 but it divides 

each output so that the total sum of all outputs is equal to 

1, i.e., probabilities. This is shown in Equation 5. The 

output is equivalent to the categorical probability 

distribution, suitable for multiclass predictions [7]. 

𝑓(𝑥)  =  
𝑒𝑥𝑘

∑ 𝑒𝑥𝑘𝑘
 

 
[5] 

 Where k is the number of classes. 
 For training, the CNN performs backpropagation to 

calculate partial derivatives, allowing it to associate 

features with its classes through supervised learning. For 

the loss function, which measures performance, cross-

entropy was used. Cross-entropy loss is given in Equation 

6 and simplifies to Equation 7 for binary classification. 

𝑙𝑜𝑠𝑠 =  − ∑ 𝑦 × 𝑙𝑜𝑔(𝑝)

𝑁

𝑐=1

 

[6] 

 

 
Where y is the class ground truth, p is predicted probability 

that observation is of class c and N is the total classes. 

𝑙𝑜𝑠𝑠 =  −(𝑦 × 𝑙𝑜𝑔(𝑝)) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)) [7] 

Where y is the class ground truth, p is the predicted probability. 
 

 Cross entropy heavily penalises predictions of high 

confidence and value, which are incorrect. Cross-entropy 

is more preferred for classification tasks as Mean Squared 

Error can be badly defined for a distinct set of classes [7]. 

 For the optimiser, which allows the model to update 

weights and reduce loss, Adaptive Moment Estimation 

(Adam) is used. It uses fractions of previous gradients, 

allowing faster convergence, reduced oscillation, and 

computational efficiency [12]. It uses moments (gradient 

of past steps) of first and second order. The learning rates 

are adapted on the first moment (mean) and average of the 

second moments of the gradients.  

2.2. Multilayer Perceptron 

A Multilayer Perceptron (MLP) is a type of Artificial 

Neural Network consisting of a network of neurons called 

perceptrons. A perceptron is as a linear binary classifier 

[13]. Based on several inputs, its weights, and bias, a single 

output is calculated as shown in Equation 8. 

𝑦 =  𝛼(∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) [8] 

Where y is the output, 𝛼 is the non-linear activation function, 

x is weight, b is bias, and x is input. 
 

The activation function is acts as a threshold for 

activation and output strength. Non-linearity allows MLPs 

to model nearly any arbitrary complex function. Without 

it, a neural network would act as a linear regressor [13]. 

 
Figure 5. The architecture of the MLP with 2 hidden layers. 

 Figure 5 depicts the architecture of the MLP used. The 

first layer is an input layer with a size of 196608 (image 

flattened into a vector). This is input to the two hidden 

layers, both containing 128 neurons with a ReLU 

activation. Although the Universal Approximation 

Theorem states a single hidden layer is enough, adding 

another allows better training and performance [14] [15]. 

Based on the task, the output layer contains 1 neuron 

with a Sigmoid activation or multiple neurons with a 

Softmax activation. The network was trained using cross 

entropy loss and Adam optimizer. Benefits and 

justification to these choices have been discussed earlier. 

2.3. Inception v3 

Inception v3 is the third iteration of the Inception deep 

convolutional architecture. GoogLeNet (Inception v1) 

introduced Inception modules; convolutions on inputs 

using different filter sizes and max pooling which are 

concatenated. In image classification, salient parts in the 

image can vary. Different kernel sizes allow different 

distribution of features to be accommodated. Inception 

modules allow NNs to get wider, as deeper networks are 
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prone to overfit and are computationally expensive [16]. 

Inception v3 contains 11 inception modules in 42 layers. 

Inception v3 implemented factorising convolutions, grid 

size reduction, and aggressive regularisation. Convolutions 

were factorised into smaller sizes and asymmetric 

convolutions. Factorisation reduces the number of 

parameters without a decrease in performance. Feature 

map downsizing is typically done via max pooling. The 

model proposed a new method by concatenating a 

convolutional and max pooling layer, proving to be less 

expensive. Label smoothing regularisation was used to 

prevent one logit from becoming much larger and acted as 

a dropout [17]. 

The Inception architecture rethought how CNNs were 

built, going wider instead of deeper. Inception v3 contained 

fewer parameters than other popular models such as 

AlexNet and VGGNet and achieved better performance. It 

managed a lower Top-5 error (4.2%) compared to 

VGGNet, PreLU-Net and Inception v2 in the ImageNet 

Large Scale Visual Recognition Competition (ILSVRC). 

3. Implementation 

All models were implemented in Python and use the 

Keras library running on top of the TensorFlow library. 

3.1. Convolutional Neural Network 

A Keras Sequential object was created which will allow 

stacks of layers for the CNN [18]. A Conv2D layer was 

then for a convolutional layer. The input shape dimensions 

were set at the dataset image dimensions of 256X256, with 

a depth of 3 to indicate the image RGB colour channels. A 

total of 32 3X3 convolutional filters were used. 

A small 3X3 kernel size was chosen with the assumption 

that features are highly local, allowing accurate detection 

of subtle features. A lower number of weights due to the 

smaller receptive field requires less computationally 

power. A larger output dimension due to a smaller filter 

ensures more information is available for later layers and 

improved combinatorics due to increased non-linearity [7] 

[19]. 32 filters were used to balance hardware limitations 

and number of weights for better training. The stride value 

was 1, to ensure filters would cover every part of the image 

for better accuracy. No padding was used as features were 

most likely to be centered [7]. A MaxPooling2D layer with 

a pool size of 2X2 and stride of 2 was added. A pool size 

of 2X2 will reduce the feature map by half to reduce the 

number of parameters and computation expense as well as 

introduce invariance. Another 2 Conv2D and 

MaxPooling2D layers were added with similar parameters. 

However, the final Conv2D layer uses 64 filters instead. As 

this was the final convolutional layer before the FC layers, 

the number of filters was doubled for better performance. 

Then a Flatten layer was added to convert 3D feature 

maps into a 1D feature vector for classification. This is fed 

into a FC layer, a Dense layer with 128 neurons, to ensure 

good performance whilst avoiding hardware limitations.  

For the output layer, a single unit Dense layer or a 7-unit 

Dense layer was used for the binary and multiclass 

classification respectively. Both used cross entropy loss, 

but the binary model used the binary_crossentropy 

parameter and the multiclass used 

categorical_crossentropy. Both models used the Adam 

optimizer with a learning rate of 0.00001. This allows 

convergence to occur within 60 epochs. A range of values 

was tested with higher rates unable to converge and lower 

rates taking more epochs to converge. The model was then 

compiled via the compile method and trained using the 

fit_generator method. fit_generator trains the model on 

generated images via batches and the batch size was set at 

32, a value most often used. Epochs, the number of 

iterations of training to run, was set at 100. Steps taken was 

the size of the batches divided by its total. An 

early_stopping method was used for early stopping of 

training to prevent overfitting. For class_weights, which 

are the weights assigned to each class during training, 

several options were designed. As the dataset was 

imbalanced, it was important to use class weights to 

heavily notice classes with lower representation to avoid 

detrimental performance [20]. Although this may also be 

solved via oversampling, class weights were also an 

effective method. The chosen method was using a Scikit-

learn method, class_weight to calculate the weights 

according to the distribution of images. Keras’ 

predict_generator method performs predictions on the test 

dataset and the results saved as a Pandas dataframe. Using 

the method to_csv allows the results and its accuracy score 

obtained from Keras to be exported as a CSV file. 

3.1.1 Training convergence and overfitting possibilities 

 
Figure 6 depicts the learning curves for the model using 

the eyeglasses classification task. To prevent overfitting, 

early stopping was used. Early stopping prevents further 

training for the model and wasting power. First, the model 

was run without early stopping to overfit.  In the 

Eyeglasses task, the model overfits after epoch 60 on 

average as the training loss begins to stagnate even though 

the training loss keeps decreasing. After implementing 

early stopping, the model converges on average at epoch 

43, achieving accuracy of 98.98%. In Keras, using the 

early_stopping callback method, the patience parameter 

was set to 5, for further training of 5 additional epochs after 

the validation loss does not decrease. 

Unlike binary classification, which took 60 epochs to 

converge on average, the multiclass task required 15 

epochs to converge, and further training lead to overfitting. 

Figure 6. Training loss and accuracy against validation loss and 

accuracy using the CNN model for eyeglasses prediction. 



 

5 

3.2. Multilayer Perceptron 

Using a Keras Sequential object, a Flatten layer was 

added to reduce the dimensions of the input image into a 

vector. Then, two Dense layers with 128 units and ReLU 

activation was added. Based on the task, the output Dense 

layer’s units and activation were either 1 and Sigmoid or 7 

and Softmax. Justification is the same as the CNN model. 

Like the CNN, the MLP was trained with a cross entropy 

loss optimised with a 0.00001-learning rate Adam. 

Compile, training, class weight and predict methods are as 

the CNN, with the only difference being that the maximum 

epoch was set at 200 as MLPs took longer to train. 

3.3. Inception v3 

Inception v3 is built into Keras and requires importing. 

For this model, Keras’ functional Model API was used, as 

it allows more complex models to be created [21]. An 

InceptionV3 method was called with parameters imagenet 

for weights, an average pooling (to reduce parameters) and 

include_top being False. The top layers from literature are 

not needed as the model will be trained with a new output 

layer. A Dense layer was used as the output layer with its 

units and activations determined by the type of problem as 

described in the CNN model. A Model was created with 

the InceptionV3 model as the input and the Dense layer as 

output. The compile, training and prediction methods and 

parameters are as in CNN as both are Neural Networks. 

The only difference is that this model’s train epoch was set 

at 50 because it achieved convergence faster than the CNN. 

4. Experiments 

A comparison of the models was done to assess 

performance differences. Several experiments were also 

conducted to assess the impact of hyperparameters and 

other factors on the performance of the CNN. The CNN 

was evaluated on the same task; Eyeglasses. This was 

chosen because, in testing, Eyeglasses was not the easiest 

(human) nor the hardest (hair color) task. All tests were run 

5 times and relevant metrics averaged out. Additional tests 

are also presented in the Supplementary. 

4.1. Comparison between models 

The models compared are the CNN, MLP and Inception 

v3. Average loss, accuracy, F1, epoch duration, and 

convergence epoch was recorded and compared. 

4.2. Filters 

Filters function as feature extractors. Larger filters are 

preferable for larger features and smaller filters for more 

localised features. Several filter sizes were compared; 1X1, 

3X3, 5X5, and 9X9. 1X1 filters are used for dimensionality 

reduction and add non-linearity. According to Yann 

LeCun, 1X1 convolutions and FC layers are similar [22]. 

4.3. Fully Connected Layer Size 

The FC layer acts as the classifier with the size being the 

number of neurons in the layer. The model performance 

was compared with different FC layer sizes. There is no 

standard for this parameter and as such, is explored. 

5. Results 

5.1. Convolutional Neural Network 
Task Loss Acc F1 Top-2 Top-3 

Emotion 0.242 0.887 0.942 - - 

Age 0.301 0.821 0.906 - - 

Eyeglasses 0.0453 0.989 0.997 - - 

Human 0.00012 0.998 0.999 - - 

Hair Colour 0.914 0.652 0.755 0.843 0.938 

Table 1. CNN performance on 5 different classification tasks. 

Table 1 depicts the performance of the CNN on the 

classification tasks. Training time was 9 seconds per epoch. 

For binary classification, the model performed best on the 

Human classification task, achieving accuracy and F1 

scores of nearly 100%. An explanation for this is that the 

non-human images (Cartoon Set) are uniform in shape, 

have flat colours and are facing forwards. More complex 

features can be observed from the CelebA images. It is 

possible these distinct differences made classification easy. 

For binary classification, the model performed worst on 

the Age task, with accuracy of 86.1%. Across both sets, 

differences between young and old subjects were very 

subtle, especially in the Cartoon Dataset, as cartoons 

lacked age-related features such as wrinkles. The model 

made more errors in old subjects, with an 18.2% error rate. 

In the multiclass task, the model performed poorly with 

accuracy of only 65.2% and F1 score of 75.5%. However, 

the accuracy increases significantly in the Top-2 and Top-

3 scores. Upon inspection of the prediction CSV and 

answer files, it was discovered that the noise labels heavily 

influenced the predictions. Many of the incorrect 

predictions had the noise class as a prediction, with the 

correct class being the second highest probability. As there 

were multiple classes, there was less training data per class, 

which led to relatively poorer generalisation in the model. 

5.2. Comparison between models 

Model Loss Acc F1 
Epoch 

duration 
Conv 

CNN 0.0453 0.989 0.997 9 43 

MLP 0.328 0.853 0.877 13 105 

Inception v3 0.0159 0.997 0.998 49 14 

Table 2. Performance comparisons between CNN, MLP and Inception v3. 

 Inception v3 had the best performance in both accuracy 

and F1 scores. Although it can be argued that the 

performance improvement over CNN is marginal, with 

only a 0.8% improvement in accuracy and very marginal 

F1 improvement. Inception v3 required more 

computational power, taking more time to train. Although 

it achieved faster convergence, it took 49 seconds per 

epoch on average, making its overall training time longer 

than the CNN model (9s). The excellent performance of 

CNN and Inception v3 over MLP proves the superiority of 

newer Neural Network architectures over classical 

Machine Learning algorithms such as MLP in image 
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classification tasks. MLP took the longest to converge and 

yet had the worst performance. 

5.3. Filters 
Filter Size Loss Accuracy F1 

1X1 0.415 0.798 0.843 

3X3 0.0453 0.989 0.997 

5X5 0.275 0.9024 0.954 

9X9 0.402 0.812 0.875 

Table 3. Comparison of different kernel sizes. 

 Based on Table 3, the 3X3 filter produced the best 

results. The 1X1 filter only reduces the feature map and 

thus performs the worst as this would mean no proper 

feature extraction was performed. Although eyeglasses as 

a feature is not as a subtle or small as age or smiles, the 

smaller filter window had the best performance. A reason 

could be because the smaller filter was able to better pick 

up on what makes up the shape and colour of glasses, 

instead of a general shape, leading to better predictions. 

5.4. Fully Connected Layer Size 
Neurons Loss Accuracy F1 

32 0.375 0.842 0.727 

64 0.426 0.805 0.785 

128 0.0453 0.989 0.997 

256 0.0475 0.991 0.998 

Table 4. Comparison between FC layer size performance. 

 Utilising more neurons produced better results with 256 

neurons having the best performance. However, the 

increase in accuracy and F1 score is only marginal 

compared to 128 neurons. Utilising more neurons uses 

more computational power and may not be more cost-

effective. An interesting observation is that 32 neurons 

produced better accuracy than 64 neurons, but it had a 

worse F1 score. The imbalanced dataset may have affected 

the accuracy calculations and is further reason why F1 as a 

metric is important in unbalanced dataset problems. 

6. Related Work 

With the advent of Big Data, image datasets used for 

classification have grown significantly. This lead to a 

problem with noisy labels, especially for images scraped 

from the internet. Wu et al. proposed a CNN framework to 

embed a universal face representation in a light CNN 

containing a smaller number of parameters and semantic 

bootstrapping to relabel or remove noisy labels [24].  This 

resulted in a faster and smaller CNN. However, this model 

performed only marginally better or even worse to models 

such as GoogLeNet. Also, Semantic bootstrapping requires 

training on a “clean” dataset before being able to relabel 

and requires tuning to avoid incorrect labels. This model 

has potential for real-time recognition systems. 

Humans are highly capable of one-shot learning, being 

able to distinguish objects given only one example, unlike 

DNNs, which require high amounts of labelled data. As 

such, Siamese Neural Networks have been developed to 

perform one-shot image recognition. Siamese networks 

contain two branches of CNNs to obtain two feature 

vectors. The two vectors are merged to obtain the distance 

between each point. A smaller distance indicates a highly 

similar image. Koch et al.’s approach to implementing one-

shot learning was to train the model to predict whether the 

images in each branch were of the same class [25]. 

An advantage of this model is that very little training 

data was required. In a verification task, this model 

performed better than other one-shot learning models such 

as Affine and Hierarchical Networks but worse than 

Hierarchical Bayesian Program Learning. However, the 

model was trained on the Omniglot dataset, which consists 

of characters, and requires further development to one-shot 

learn images of humans. Another flaw is that it requires 

examples from every class to be used for comparison, 

which can quickly grow if more classes are added. 

Although deeper neural networks can lead to better 

performance, they become more difficult to train due to the 

massive number of weights. Residual Networks such as the 

model presented by He et al. proposes building layers with 

residual mappings to learn residual functions from the 

input layers [26]. Residual mappings allow a deeper 

network to be created with equal or fewer parameter than 

its shallower counterparts. In the paper, a Residual network 

of 152 layers was 8 times deeper than a VGG network but 

used fewer parameters. The model is easier to optimise due 

to each residual block being optimised by the previous and 

achieved superior performance in image recognition, 

winning 1st place in the ImageNet 2015. Several variations 

have been presented such as ResNeXt and DenseNet [27] 

[28]. However, the model has 152 layers, which still 

required massive computational power, although it has 

relatively low convergence times. As such, many new 

networks only utilise the residual mapping idea introduced 

to reduce convergent times and increase network depth. 

7. Conclusion 

In conclusion, CNN and Inception v3 performed much 

better than MLP in the classification tasks with Inception 

v3 performing marginally better. However, Inception v3 is 

computationally more expensive and takes longer to train 

than CNN. The models performed better on binary 

classification tasks compared to the multiclass task, mainly 

due to the lack of training data per. For the CNN model, 

binary classification was best for the Human task and 

multiclass classification was best when equal class weights 

were used. Experiments showed that automatically 

calculating class weights, 3X3 filter sizes, increasing FC 

layer size, only using image augmentation as a regulariser, 

a cross entropy loss and a Sigmoid activation for the FC 

layer lead to the best performance. 

For better statistical significance and accuracy, cross-

validation and stratified k-fold methods could be 

implemented due to the small dataset size. Other networks 

could also be implemented to compare performance such 

as Inception-ResNet, ResNet, Squeeze-and-Excitation 

networks and Neural Architecture Search (NAS).
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Supplementary 

1. Dataset 

1.1. Dataset Class Distribution 

The images are labelled via a CSV file, attribute_list.csv, 

containing each image’s class labels according to several 

attributes. The distributions of images in each class are 

illustrated according to Tables 1, 2, 3, 4 and 5. 

There are 435 noise images, which is 8.7% of the entire 

dataset. Removal of noise would leave a total of 4565 

usable images for the binary classification tasks. From the 

4565 images, 663 contain label noise for the multiclass 

classification task. The label noise is represented as a N/A 

class in the hair attribute. Thus, there are technically only 

4337 labelled images for multiclass classification. 
Class Total Percentage 

smiling 3634 79.61% 

not smiling 931 20.39% 

Table 1. Counts and percentages of the smiling attribute  

Class Total Percentage 

young 3614 79.17% 

not young (old) 951 20.83% 

Table 2. Counts and percentages of the age attribute. 

Class Total Percentage 

eyeglasses 1328 26.56% 

no eyeglasses 3237 70.91% 

Table 3. Counts and percentages of the glasses attribute. 

Class Total Percentage 

human 2000 43.81% 

not human 2565 56.19% 

Table 4. Counts and percentages of the human attribute. 

Class Total Percentage 

N/A 663 15.29% 

Bald 88 2.03% 

Blond 995 22.94% 

Ginger 547 12.61% 

Brown 943 21.74% 

Black 788 18.17% 

Grey 541 12.47% 

Table 5. Counts and percentages of the hair attribute. 

A more detailed presentation of class distributions is 

given in Tables 1, 2, 3, 4, and 5. Heavily imbalanced data 

may lead the model to only predict a single class as it will 

lead to the highest accuracy [29]. 

2. Preprocessing 

2.1. Determining Training-Testing Ratio 
Ratio Avg loss 

0.5 0.1152 

0.4 0.0803 

0.3 0.0791 

0.2 0.0740 

0.1 0.0779 

Table 6. Training-testing ratios against average test loss 

The goal in determining a suitable training-test ratio is 

to ensure that there is enough testing data to prevent high 

variance in model performance but enough training data to 

prevent high variance in parameter estimates. 

Determination of the training-testing ratio is important 

to maximise the bias-variance tradeoff. This helps in 

preventing overfitting due to high variance and underfitting 

due to high bias [30]. B. Neal et al. discovered that the 

variance caused by the loss decreases with more hidden 

units and increases with layers [31]. However, variance 

remained the same due to sampling. 

Using the CNN performed on a simple binary 

classification task described in the main paper with all 

parameters the equal, the training-test ratio was modified, 

and the test loss was recorded. Each ratio was used to run 

5 separate training sessions and the average loss was 

calculated. 

It was found that the model on average, performed the 

best with a 0.2 ratio, at an average loss of 0.074. However, 

the differences in loss between 0.1, 0.2 and 0.3 and even 

0.4 may be too small for a definitive answer. 

2.2. Determining Training-Validation Ratio 
Ratio Avg loss 

0.5 0.0954 

0.4 0.0784 

0.3 0.0778 

0.2 0.0576 

0.1 0.0670 

Table 7. Training-validation ratios against average test loss 

The goal in determining a suitable training-test ratio is 

to ensure that there is enough testing data to prevent high 

variance in model performance but enough training data to 

prevent high variance in parameter estimates. 

Using the CNN described in the main paper, the 

training-validation ratio was modified, and the test loss was 

recorded. Each ratio was used to run 5 separate training 

sessions and the average loss was calculated. 

The 0.2 ratio provided the best performance with an 

average loss of 0.0576. 

3. Proposed Algorithms 

3.1. CNN Tensor Output Sizes 

The size of the output tensor of a convolution layer is 

depicted in Equation 1. 

O =  
𝐼 −  𝐾 +  2𝑃

𝑆
 +  1 [1] 

Where O is the size of the output, I is the size of the input, K is 

the size of the filter, P is padding, S is stride. 

The output size of every pooling layer is given in 

Equation 2. 

O =  
𝐼 −  𝑃

𝑆
 +  1 [2] 

Where O is the size of the output, I is the size of the input, P is 

the pool (kernel) size, S is stride. 

3.2. Backpropagation 

 Backpropagation is the supervised learning training 

process in neural networks to calculate the gradient to 

adjust the value of weights or filters to minimise a given 

loss function. The result desired would be a model that has 
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a low loss and high accuracy in solving a certain task. This 

involves 4 distinct subprocesses; Forward pass, loss 

function, backward pass and weight update [32]. 

 First, in the forward pass, an input is passed through the 

whole network. All weights or filter values initially have 

random values. No conclusion can be drawn from this. 

Then, the loss function is applied. A loss function is a 

method to evaluate the performance of an algorithm. A 

higher value would indicate poor performance and 

conversely, good performance [33]. A CNN can be 

summarised as a function in Equation 3. 

𝑦 =  𝑓(𝑥, 𝑤) [3] 
Where y is the output, x is the input, w is the network weights. 
To reduce the loss, a minimisation problem must be 

solved. The derivative (gradient) of the loss function with 

respect to the weights and inputs must be calculated and 

taken. Thus, backward pass is used. It is assumed that the 

gradient of the lass with respect to the output is obtained 

from previous layers. Through the usage of the chain rule 

of derivates, the gradient of the loss with respect to the 

weights and inputs (outputs from the previous layer) is 

calculated. Any change in the weight associated with a 

filter will affect the output. These changes contribute to the 

final loss. This is shown in Equations 4 and 5. 

𝜕𝐸

𝜕𝑦𝑛−1
=

𝜕𝐸

𝜕𝑦𝑛
×

𝜕𝑦(𝑤, 𝑦𝑛−1)

𝜕𝑦𝑛−1
 

𝜕𝐸

𝜕𝑤𝑛
=

𝜕𝐸

𝜕𝑦𝑛
×

𝜕𝑦(𝑤, 𝑦𝑛−1)

𝜕𝑤𝑛
 

Where E is the loss, w is weight, y is output, n is 

current layer index 

[4] 

 

 

[5] 

 

 

 This determines the weights contributing most to the 

loss. Then, weight update occurs. Weights are updated to 

reduce the loss function. The entire process is then 

iterated for a predetermined number of steps. 

3.3. Momentum 

 In Momentum, instead of just using the current step’s 

gradient, momentum accumulates gradients of past steps. 

3.4. RMSProp 

 RMSProp is an adaptive learning rate method [34]. It 

uses a moving average of squared gradients to normalise 

itself to balance the step size. The step will be smaller for 

large gradients to avoid explosions, or larger for small 

gradients to avoid vanishing of the gradient. 

3.5. Inception Modules 

 Inception modules perform convolutions on an input 

using 3 different filter sizes; 1X1, 3X3 and 5X5. Max 

pooling is also performed on the input and the results are 

concatenated as a single output. Figure 1 depicts an 

implementation of the module in GoogLeNet using 

dimension reductions [16]. 

 
Figure 1. Inception module with dimension reductions. 

 Dimension reductions are done using 1X1 convolutions 

before the filters and after the max pooling to further 

reduce the input feature size and reduce computational 

expense. 

4. Results 

4.1. Accuracy and F1 as Metrics 

Accuracy is an intuitive metric for performance, 

however as demonstrated earlier in the paper, the dataset 

given is heavily imbalanced for most of the tasks and may 

skew results. As such, F1 is also introduced as a metric. 

F1 is a metric that is the harmonic mean of precision 

and recall. This takes all classes into account as a weighted 

average. The formula for F1 is shown in Equation 6. 

𝐹1 =  2𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

Where Precision is ratio of True Positives and Recall 

is ratio of True Negatives. 
 

[6] 

 

 

F1 scores were calculated based on the confusion matrix 

generated after model training. 

4.2. Convolutional Neural Network 

The learning graphs for the CNN model from the other 

classification tasks are presented in Figure 2, 3,4 and 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Emotion classification task learning graphs. 

Figure 3. Age classification task learning graphs. 

Figure 4. Human classification task learning graphs. 
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5. Additional Tests and Clarifications 

5.1. Class Weights 

As presented in the Dataset section, the dataset is heavily 

imbalanced for most of the tasks. An unbalanced dataset 

may lead to the model bias towards a single class to achieve 

better accuracy. As such, several strategies to assign class 

weights were compared. The multiclass classification task 

was also included in the experiment because the multiclass 

problem had noise labels which required different 

strategies to resolve. 

For binary classifications, Auto Binary uses Scikit-

learn’s class_weights method to automatically balance the 

classes using calculated class weights based on the training 

dataset distribution. Equal Binary means that the same 

class weight, 1, is used across all classes. Dataset Binary is 

the class weights manually calculated based on the entire 

dataset distribution, not just the training dataset. 

Auto, Equal and Dataset class weight methods are the 

same for the multiclass classification task. However, the 

hair color problem contains noise labels which are 

addressed in two additional methods; Dataset NaN 

suppress uses the dataset distribution but assigns 0 to the 

noise class for the model to ignore the class in training. 

NaN Suppress is based on the auto Scikit-learn method 

with the noise class also set to 0. 
Class Weight Loss Accuracy F1 Conv. 

Auto Binary 0.0453 0.989 0.997 43 

Equal Binary 0.0591 0.978 0.989 45 

Dataset Binary 0.361 0.850 0.851 35 

Auto Multi 0.914 0.652 0.755 16 

Equal Multi 0.660 0.748 0.812 87 

Dataset Multi 0.915 0.680 0.740 - 

Dataset NaN 

Suppress 
1.224 0.711 0.699 - 

NaN Suppress 0.335 0.747 0.836 - 

Table 8. Class weight methods comparison in performance. 

 In the binary classification task, the auto-balanced 

weights had the best performance and balancing the 

weights based on the entire dataset produced the worst 

results. As the dataset is unbalanced for eyeglasses, the 

result was expected. Since the training dataset is a subset 

of the entire dataset, it makes little sense to balance the 

weights based on the entire dataset as the randomised 

preprocessing methods may randomly select an even more 

unbalanced range of images. 

 For the multiclass classification task, using equal 

weights across classes produced the best result at the cost 

of convergence times. A possible explanation would be 

that balancing the weights based on class counts made it 

harder for the model to learn as there is very little data per 

class to learn on. Removal of the noise class via class 

weights, although increased performance, did not achieve 

convergence. It could be because although noise labels 

were not considered in training, the model was validating 

the outputs against validation sets that still had noise labels 

as answers to compare against. This means that accuracy 

could be underrepresented.  

5.2. Image Augmentations 

Based on the Image Augmentation section in the paper, 

several augmentation strategies were compared. None 

means no augmentation was performed and Normal is the 

augmentation strategy outlined earlier. Heavy is a 

modification of the normal image augmentation strategy to 

include rotation and shifting the widths and heights of the 

image. 
Augmentation Loss Accuracy F1 

None 0.0575 0.983 0.985 

Normal 0.0453 0.989 0.997 

High 0.154 0.897 0.889 

Table 9. Comparison between image augmentation methods. 

 The results of the experiment are shown in Table 9. The 

normal image augmentation strategy from the main paper 

had the best performance, although marginal compared to 

the high augmentation method. However, the F1 score in 

the high augmentation method was more than marginal in 

difference. This could mean that the high augmentation 

method had the worst performance. An explanation is that 

the additional augmentations to the image was not 

meaningful and prevented the model from properly 

learning the features from images. It could be the additional 

augmentations were too extreme and did not reflect the 

unaugmented test dataset. 

5.3. Loss function 

Different loss functions were used and compared to 

identify the differences in performance. The loss functions 

compared were Mean Squared Error (MSE), Mean 

Squared Logarithmic Error (MSLE), Hinge, Squared hinge 

and Cross entropy (logarithmic). 
Loss Loss Accuracy F1 Conv. 

Cross Entropy 0.0453 0.989 0.997 43 

MSE 0.0118 0.988 0.992 61 

Hinge 0.682 0.318 0 - 

Poisson 0.520 0.837 0.873 - 

KL Divergence 0.001 0.315 0 - 

Table 10. Comparison between loss function performance. 

 Cross entropy had the best accuracy and F1 score, at 

0.989 and 0.997 respectively. However, the accuracy 

improvement was only marginal compared to MSE. Cross 

entropy also managed to converge the quickest, taking on 

average 43 epochs. 

 The model was unable to converge using Hinge loss 

and had terrible performance. Both Hinge and KL 

Divergence losses did not manage to converge and 

Figure 5. Hair color classification task learning graphs. 
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produced poor accuracy. The F1 score of 0 indicates that 

the losses swung predictions into a single class. Hinge loss 

is typically used for SVMs. The learning rate could be 

lowered for both losses. However, for this experiment, all 

other parameters are kept the same. 

5.4. Activation function 

Different activations in the output layer were compared 

to assess performance differences. Sigmoid, Softmax, 

Exponential Linear Unit (ELU), Hyperbolic Tangent 

(Tanh) and ReLU were used. 
Activation Loss Accuracy F1 Conv. 

Sigmoid 0.0453 0.989 0.997 43 

Softmax 0.0591 0.978 0.989 45 

ELU 0.00521 0.785 0.842 30 

Tanh 5.397 0.178 0 - 

ReLU 0.0494 0.787 0.836 32 

Table 11. Comparison between final layer activation 

performance. 

Based on the results in Table 11, Sigmoid managed to 

perform the best with the highest accuracy and F1 scores, 

even though it did not converge the fastest. ELU converged 

the fastest in 30 epochs, however, it did not perform the 

best. This behaviour is expected as ELU manages faster 

learning as shown by Clevert et al [35]. Since there are no 

negative inputs in features, it is not surprising that RELU 

produced a similar performance as ELU. Tanh did not 

manage to converge and had the worst performance. It 

could be due to a vanishing gradient as the Tanh curve is 

steeper compared to a Sigmoid. 

5.5. Regularisation 

Regularisation reduces overfitting. 3 different methods 

are compared; Dropout, L1 and L2. Dropout randomly 

drops out neurons during each weight update. For this 

experiment, a light dropout where a 20% dropout after the 

FC layer and heavy dropout where 20% dropout was added 

after every layer is compared. L1 and L2 regularisation add 

a regularisation term to the cost function which modifies 

the weights in the network [23]. 
Regulariser Loss Accuracy F1 Conv. 

None 0.0575 0.983 0.985 43 

Light Dropout 0.291 0.889 0.887 198 

Heavy Dropout 0.584 0.712 0.811 89 

L1 0.674 0.714 0.719 81 

L2 0.499 0.825 0.774 83 

Table 12. Comparison between regulariser methods. 

 Based on the results in Table 12, using any regulariser 

worsened performance and increased convergence time. 

Even a single dropout reduced performance by 10%. Since 

the model did not suffer from overfitting in the first place, 

additional regularisation is unnecessary as image 

augmentation already acted as a regulariser. The small 

training dataset size did not allow the possibility of 

overfitting so that the regularisation methods can be taken 

advantage of. 

 

6. Related Work 

6.1. Light CNN and Semantic Bootstrapping 

A Max-Feature Map (MFM) operation was introduced, 

an operation to suppress neurons so that CNN models are 

relatively lighter. The operation is based on the neural 

science of Lateral Inhibition. Unlike ReLU, this will avoid 

loss of information and instead separate noisy and 

informative signals. Semantic bootstrapping, based on 

child linguistic development theory, is an approach to 

model training samples during the forward process by 

resampling. This allows the trained model to sample 

training data from noisy datasets and relabel the noise. A 

new dataset can then be reconstructed. 

6.2. Siamese Neural Networks 

Typical deep neural networks contain a massive number 

of parameters to gradient descent upon, which is 

problematic when it needs to generalise based only a single 

example. Siamese networks utilise transfer learning by 

training each branch as a classifier and merged into a fully 

connected layer calculating the L1 Siamese distance. L1 

distance is given in Equation 7.  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ |𝑥1 − 𝑥2| 

Where x is the feature vector 
 

[7] 

 

 Siamese networks are designed to be symmetric and as 

such, the hyperparameter tuning was the same for each 

branch. The “head” of the network is a simple linear 

classifier which outputs a prediction between 0 to 1 on 

whether the two images are similar. 

6.3. Residual Networks 

Deeper networks are exposed to a degradation problem 

where accuracy saturates and then rapidly degrades. He et 

al. posits that reframing layer mappings can lead to easier 

optimisation [26]. 

 
Figure 6. A fundamental block of a residual network. 

 Figure 6 depicts a residual mapping using 2 layers. A 

typical neural network would only have an F(x) mapping, 

where x is the input. By skipping layers, a residual F(x) + 

X mapping was created.  

 For optimisation, it is easier to optimise the residual F(x) 

function rather than optimise a whole stack of non-linear 

CNN layers with a function F(x) = y. Subsequent bocks in 

the network can fine-tune the output of a previous block.  
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